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LETTER TO THE EDITOR 

The critical point of fractal percolation in three and more 
dimensions 

K J Falconer and G R Grimmett 
School of Mathematics, University of Bristol, University Walk, Bristol BS8 ITW, UK 

Received I February 1991 

Abstract. The fractal percolation model is constructed by the progressive replacement of 
each cube by a random collection ofsub-cubes, each sub-cube being retained with probabil- 
ity p. There is a critical probability p.(M, d )  depending on the dimension d and the 
substitution ratio M. We point out that, for large M, the value of p J M ,  d )  is near to that 
of site percolation on a lattice derived from the d-dimensional hypercuhic lattice by the 
addition of certain bands. 

Let d 2 2, M 2 2 and O < p  < 1. We consider a ‘random fractal’ C constructed as follows. 
Let CO be the unit cube [0, lId of Wd. Divide CO into M d  equal closed cubes each of 
side-length M-l in the obvious way. We select each of these cubes with probability p 
independently of all other cubes, and denote by C ,  the union of the cubes thus selected. 
In the same way, we divide each cube of C ,  into M d  sub-cubes of side M - 2 ,  select 
each of these with probability p independently of the other sub-cubes, and let C, be 
the union of the selected sub-cubes of C ,  . Continuing in this way, we obtain a decreasing 
sequence of closed sets CO 3 C,  3 C, 2. . . , where C. is the union of cubes of side-length 
M-”. Let C = nL, C. be the ‘limit’ of this sequence of sets. Provided that this process 
does not become extinct (i.e. provided that C, f 0 for all n), the limit set C may be 
thought of as a ‘random fractal’. The dimension of C is given by 

l b  PI dim,, C = dim, C = d - -  
log M 

with probability 1, where dim, and dim, denote Hausdorff and box dimensions; see 
Falconer (1990) for details and references concerning fractals. 

Constructions of this form have been used to model a variety of physical processes, 
such as the distribution of galaxies in the universe, or intermittency in turbulence; see 
Mandelbrot (1983, section 23). 

We consider the topology of the random set C. If O S p  < MI-‘, then by (1) almost 
surely dim, C < 1, implying that C is totally disconnected. On the other hand, if p is 
sufficiently close to 1, then there is a positive probability that C contains ‘long paths’; 
that is to say, there is a positive probability that opposite faces of CO are joined by a 
path contained within C, in which case we say that percolaion occurs. It is actually 
the case that there exists a critical probability p,(M, d )  such that, if p <p , (M,  d )  then 
C is totally disconnected almost surely, and if p > p , ( M ,  d )  then percolation occurs 
in C with positive probability. (In fact, at least if d = 2, percolation occurs if p 2 
p,(M, d); see Chayes et a/ 1988.) 

It is natural to relate fractal percolation to discrete lattice percolation, described 
fully in Grimmett (1989). Consider the lattice graph Zd, with vertices at the points with 
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integer coordinates, and an edge joining x, y E Ed if and only if the Euclidean distance 
from x and y satisfies Ix -yJ = 1. Let O<p < 1 and declare each edge of the lattice open 
with probability p, independently of the other edges. Let S be the set of open edges 
in the lattice. Then there exists a critical probability p,(Zd) such that if p < p , ( Z d )  then 
almost surely S has no unbounded connected component, whereas if p>pc(Zd) then 
with probability one S has a unique unbounded connected component. It may be 
shown that if B is a very large lattice cube in Zd, then the probability of opposite faces 
of B being joined by a path in S is very small if p i  p , ( Z d ) ,  and is close to one if 
p > p . ( h d ) .  It is natural to try to relate p,(M, d )  for large M to p , ( Z d ) .  Chayes and 
Chayes (1989) showed that limM-mp,(M, 2) =p,(Z2). The purpose of this letter is to 
point out that if d a 3  then the limit of p,(M, d )  exists as M - m ,  the limiting value 
being rather smaller than p,(Ed), being equal to the critical probability of a certain 
lattice Ld derived from Zd by the addition of new edges. 

For d a 2 we construct the lattice graph Ld as follows: the vertices of Ld are the 
points of h", i.e. the points in d-dimensional Euclidean space with integer coordinates; 
two vertices x = (xI,. . . , x d )  and y = ( y , ,  , , . , y d )  are joined by an edge if and only if 
Ix. - y j [  S 1 for all i and in addition xi = yj for some i satisfying 1 6  i s  d. Thus x and y 
are joined by an edge in Ld if and only if the coordinate cubes of side 1 centred at x 
and y intersect in a set of dimension at least 1, i.e. in a line segment, square, 
three-dimensional cube, etc. Note that x and y are not joined if these cubes have just 
a single point in common. 

Just as with the lattice Zd, we declare the edges of lLd open with probability p 
independently, and let S denote the set of open edges. There is a critical probability 
p,(lLd) such that if p<pc(lLd) then S has no unbounded component, but i fp>p , ( ld )  
then S has an unbounded component. 

Of course, the lattices L2 and 2' are identical, but Zd is a proper subgraph of L" 
ford  3. (Each vertex of E" has degree 2', but each vertex of L" has degree 3d -2d - 1.) 

We claim that 

lim p,(M, d)  = p , ( L d ) .  (2) 
M-rm 

For d a 3 ,  the value of this limit is strictly less than the p,(Zd) that might have been 

The detailed proof of (2), given in Falconer and Grimmett (1991), is long and 
makes use of some results from percolation theory, in particular the recent results of 
Grimmett and Marstrand (1990), relating percolation in the whole of Ed and in a slab. 
Here we indicate why it is the lattice graph Ld that must be considered rather than 
h", and we discuss the values of the critical probabilities. 

We say that percolation occurs in C. if there is a path inside C. joining two specified 
opposite faces of Co. We say that edge-percolafion occurs in C. if these faces of CO 
are connected by a sequence or cubes in C., consecutive cubes having at least a 
(one-dimensional) edge in common-thus single point contact between cubes is 
excluded in the case of edge percolation. It is easy to see that percolation occurs in 
C if and only if percolation occurs in C,, for all n E Zt. However, we claim that 

expected: 

r . ~ ~ . . I . . : . -  I_ ,--I:- ",.A-- ---a-,...:n.. :.. ,- \ r(percorarwn L U  c1, - mu r(eugc-yc-lcu~arruu 111 c",, 
"-m 

To see this, note that if percolation occurs in C but no edge percolation occurs in 
C., then every sequence of cubes Q , ,  . , , , Qr in C, that connects opposite faces of CO 
has at least one consecutive pair, Qi, Ql+, , say, with a single point x in common. For 
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there to be a path in C joining opposite faces of CO inside this sequence of cubes, C, 
must include the cubes of sides M-"' inside Qj and Q.+, which contain the point x, 
for all m a  n. The probability of this happening for a particular sequence of cubes 
QI, . . . , QX is zero; since there are finitely many possible pairs of cubes in C. with a 
single point in common, 

P(perco1ation in C, percolation but no edge percolation in C.) = 0 

for all n. Consequently 

P(perco1ation in C )  = lim P(perco1ation in C.) 
" a m  

= lim P(edge-percolation in Cn). (3) 
"-m 

(An argument in the plane related to that which leads to (3) appears in Chayes et al 
(1988).) 

A lengthy argument shows that the limit in (3) can be made as close to P(edge- 
percolation in C , )  as we wish by choosing M sufficiently large. There is an obvious 
correspondence between edge-percolation in C ,  and the existence of an open path 
between opposite faces of a d-dimensional box of side M - 1 in the lattice graph Ld. 
It may be shown that the critical probability for the existence of such an open path 
converges to p,(L") as M-+oo. 

Estimates for p,(M, d )  are of interest, particularly for d = 2  or 3 and M large. 
However, little is known about these values; it is not even certain that pc( M, d )  decreases 
monotonically as M increases. In the plane, Chayes et al (1988) have shown that 
M-1/2 S p J  M, 2) andp,(3,2) < 0.999; numerical simulation suggests thatp,(3,2) = 0.85. 

For fractal percolation in three dimensions, we have indicated that p,(M, 3) +p,(L') 
as i"; 
from results of Aizenman and Grimmett (1991) that pc(L')<pc(Z'). The following 
argument provides a quantitative demonstration of this. 

Since L' is obtained from z' by adding edges in a reguiat fashion, it foiiows 

Consider the following subgraph of 1'. Let 

V = { ( x , y , z ) ~ H ' :  x + y  is even}. 

E be ihe sei of edges in L' Join pairs of points of ;< ( v, E )  is a subgraph 
of L' which is isomorphic to the lattice graph H'. With each edge e E E, we may associate 
a pair ofedges a(e) ,  b ( e ) e L 3  such that e, a(e), b (e )  form a triangle and such that the 
following property holds: if e, and e2 are distinct edges of E then e,, a(e, ) ,  b ( e , ) ,  e,, 
a(e2 ) ,  b(e2)  are distinct edges of L'. 

One way of achieving this is as follows. If e joins ( x , y ,  Z ) E  V to ( x + r , y + s ,  z )  
W,,G,G i, 2 --A, all" , "1L,LU"L l"II "L 6CL1C'LLL1LJ,  * , y  P l r  Clbll ,  

vertex of a ( e )  and b ( e )  to be ( x + $ ( r + s ) ,  y - i ( r - s ) ,  z+  1). If e joins ( x , y ,  Z ) E  V to 
( x , y , z + l )  then we take the common vertex to be ( x + l , y , z ) .  

Now consider the random graph obtained by selecting each edge of L' with 
probability p independently of other edges. If e is an edge of (V, E), there is a 
probability p that this edge itself is open in L' and there is a probability p2 that both 

"-1, - - A  I... :.I. .̂.I I^^^ ^F ..a-a-nl:r..\ - .. - - ~  -.._- ...~ *"b" .Le ^^ --^- nr LOL..C L l l r  CUI.ILII"II 

n l a j  onrl h ( o )  n n ~ n  ;n I T k m c  there ir n nrnh2hilitv nf "\', ",., "I* "Y". ... . _..I" I.."." .I I Y."-..- ...., -. 
1 - ( I  -p)(l  -p2) =p+p2-p3 

that the end-vertices of e are joined either by the edge e itself or by the two edges 
a ( e )  and b ( e ) .  These events are independent, for e E  E. It follows that L' has an 
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unbounded infinite component if p + p 2  - p 3  exceeds the critical probability for percola- 
tion on P. Thus 

P + P 2  - P 3  6 P c ( Z 3 )  

where p = p c ( L 3 ) .  Numerical evidence suggests that pE(Z’)=0.25 (see Essam 1972, 
p 224); using this figure it follows that limM-mp,(M, 3 )  =p,(k3)60.214. 
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